Neutrino Fixed Target Experiment at a Muon Collider

Why would a Muon Collider Help?

Very high beam luminosity

Equal numbers of e/μ (anti)neutrinos

Precisely known energy spectra

Very well determined beam intensity

- Ideal to investigate rare/new neutrino interactions
- Search for BSM physics

Case 1: SM Search (Precision in Neutrino Cross Section Measurements)

- Well known beam, direct extraction of the x-sections with much greater precision
- DIS dominates, we can probe nucleon structure at low Bjorken x and high Q²

Also, running of the weak mixing angle, etc...

Case 2: Indirect New Physics Search (SMEFT)

Using neutrinos at a muon collider we can:

- Do precision measurements of neutrino interactions (DIS x-section, weak mixing angle, etc.)
- Probe very heavy particles by precisely measuring low-energy observables using the EFT formalism.
- Unlike other probes (ATLAS and CMS, etc.), a neutrino detector has the unique capability to identify the neutrino flavor. This is crucial complementary information in case excesses are found elsewhere in the future.
- We are NOT yet prepared to identify all the interesting things we can do!

Case 2: Indirect New Physics Search (SMEFT)

- Do precision measurements of neutrino interactions (DIS x-section, weak mixing angle, etc.)
- Probe very heavy particles by precisely measuring low-energy observables using the EFT formalism.
- Unlike other probes (ATLAS and CMS, etc.), a neutrino detector has the unique capability to identify the neutrino flavor. This is crucial complementary information in case excesses are found elsewhere in the future.
- We are NOT yet prepared to identify all the interesting things we can do!